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SUMMARY

A large amount of data is now available about the pattern of connections between brain regions.
Computational methods are increasingly relevant for uncovering structure in such datasets. There has
been recent interest in the use of non-metric multidimensional scaling (NMps) for such analysis. NMDS
produces a spatial representation of the ‘dissimilarities’ between a number of entities. Normally, it is
applied to data matrices containing a large number of levels of dissimilarity, whereas for brain
connectivity data there is a very small number. We address the suitability of NMDs for this case. Systematic
numerical studies are presented to evaluate the ability of this method to reconstruct known geometrical
configurations from dissimilarity data possessing few levels. In this case there is a strong bias for NMDs to
produce annular configurations, whether or not such structure exists in the original data. For the case of
a connectivity dataset derived from the primate cortical visual system, we demonstrate that great caution
is needed in interpreting the resulting configuration. Application of an independent method that we
developed also strongly suggests that the visual system NMDs configuration is affected by an annular bias.
We question the strength of support that an NMDs analysis of the visual system data provides for the two
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streams view of visual processing.

1. INTRODUCTION

The pattern of interconnectivity between different
regions of the vertebrate brain provides clues and
constraints to hypotheses about brain function. Con-
siderable time and effort has been put into experiments
to determine the afferent and efferent patterns for
different regions. From such experiments datasets of
great size and complexity are being generated, and
computational methods for uncovering and visualizing
the structure within these datasets are becoming
increasingly relevant. In this paper we discuss the
appropriateness of one general method of data analysis/
visualization, that of multidimensional scaling (MDs)
(Torgerson 1952; Shepard 1962a,6; Kruskal 19644,b),
for understanding brain connectivity. We focus on
the dataset of connections between areas in the
primate visual cortex that have been identified by
anatomical and physiological criteria (Felleman &
Van Essen 1991). There have been many attempts to
derive connectivity maps for different parts of the
brain, which have led to wiring diagrams of ever
increasing complexity. Young (1992) was the first to
apply MDs to this problem for the primate visual cortex.

In its simplest form, Mps takes as input a symmetric
Nx N matrix which describes the ‘dissimilarities’
between a set of N entities. We discuss the case where

* Present address: The Salk Institute, 10010 North Torrey Pines
Road, La Jolla, California 92037, U.S.A.

the entities are brain regions and the dissimilarities are
information regarding whether or not these regions are
connected. The output is a plot of N points, one for
each entity, in a low-dimensional space (usually two-
or three-dimensional for ease of interpretation). The
points are positioned so that the distances between
them reflect as closely as possible (in a particular sense)
the dissimilarities between the entities given in the
original matrix. In metric Mps (Torgerson 1952), the
absolute values of the dissimilarities are taken to be
meaningful, whereas in the non-metric version (NMDs)
(Shepard 1962a,b; Kruskal 1964 4,b) only the ordering
of dissimilarities is considered. Here the aim is to find
a configuration of points in which the rank order of
distances between points reflects as closely as possible
the rank order of the corresponding dissimilarities in
the original matrix. There are many different exten-
sions of Mps, for instance to non-Euclidean distance
metrics and to asymmetric matrices, which will not
concern us here. For reviews see Shepard (1980),
Coxon (1982), Young (1984, 1987), Torgerson (1986),
Gower (1987), Young & Harris (1990).

In this paper we focus on NMps. This was developed
in the 1960s for problems in psychology, where the aim
was to learn for instance about a subject’s internal
representation of various stimuli (e.g. colours) by
studying the degree to which pairs of stimuli are judged
to be similar (see, for example, Shepard 1980). Since
then both NMDs, and to a lesser extent metric MDs, have
found widespread application in the biological sciences.
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Some illustrative examples are: (i) in taxonomy, to
produce graphical representations of the relationships
between species (Rohlf 1970; Jensen & Barbour 1981);
(ii) in ecology, to visualize relations in large species-by-
site datasets (Legendre & Legendre 1987; Digby &
Kempton 1987); (iil) in molecular biology, for se-
quence analysis (Higgins 1992; Hess ef al. 1994); and
(iv) in neurophysiology, for understanding population
responses of neurons in the monkey visual cortex
(Hasselmo et al. 1989; Young & Yamane 1992). In
addition, in the field of neural networks a number of
algorithms have been developed for mapping high-
dimensional data into a low-dimensional space (e.g.
Kohonen 1982; Durbin & Willshaw 1987; Durbin &
Mitchison 1990). Relations between these algorithms
and MDs are beginning to be explored (Lowe 1993).
However, despite a great deal of discussion of the
theoretical underpinnings of Mps in the 1960s and
1970s (see the reviews cited above), many questions
regarding the best way to apply the method, and its
validity for particular types of data, remain unresolved.
Many people have argued (see, for example, the dis-
cussion following Ramsay (1982)), that the proper
place for Mps is as a tool for data exploration rather
than analysis.

Perhaps the most important difference between the
use of NMDs for brain connectivity data compared to
more conventional applications is that, from the cur-
rently available data, it is difficult to make systematic
comparisons of the relative strengths of different
connections. The most robust way to use this data is to
regard it as providing binary information about
dissimilarities: a connection exists in either direction
(similar) or it does not (dissimilar). However, as NMDs
tries to reflect the ordering in the data, it is reasonable
to question whether it can produce meaningful results
when applied to matrices containing only a small
number of distinct levels of dissimilarity: just two in the
binary case. Very little analysis or empirical study has
been undertaken regarding the validity of NMDs under
these conditions. Here we address this issue in a
number of cases. We show that a systematic bias occurs
which introduces artefactual structure into the results,
and that this is highly relevant to the conclusions which
it is safe to draw from the application of NMDS to
connectivity data. This conclusion is of biological
significance since NMDs is starting to be applied to a
variety of connectivity datasets, and inferences of a
biological nature are being drawn from the resulting
configurations (Young 1992, 1993; Scannell & Young
1993; O’Mara ¢t al. 1994).

The structure of the paper is as follows. We first
introduce the visual system dataset, and the so-called
‘two streams’ hypothesis of visual processing. NMDs is
then applied to a binary similarity matrix derived
from this data to give a two-dimensional configuration
of areas, and how this configuration might seem to
provide strong support for the two streams view is
discussed. We then go on to an investigation of the
appropriateness of NMDs for binary data more generally.
We start by introducing the details of the NMDs method
which are necessary for understanding the results that
follow. We then present an empirical study in three
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parts. First, we show illustrative results for two example
configurations. Second, a Monte Carlo study is
presented of the performance of NMDs in reconstructing
a large number of artificially constructed configura-
tions from binary dissimilarity data in terms of various
measures of both real and apparent fit. Third, we study
the overall geometry of the derived configuration, in
order to examine the influence of artefactual structure.
In the light of these results, we return to the
configuration derived for the visual system data. Based
on our NMDs analysis, and also on an independent
analysis, we argue that this configuration contains a
significant proportion of artefactual structure, which
greatly affects its interpretation with respect to the two
streams hypothesis. Finally we address some counter-
arguments to our case that have recently been put
forward, and we consider some alternative ways in
which NMps could be applied to this problem. A
preliminary summary of some of this work has already
appeared in Simmen et al. (1994).

2. APPLICATION OF NMDS TO AREAS IN
THE PRIMATE CORTICAL VISUAL SYSTEM

The primate cortical visual system can be divided into
functionally distinct areas using various schemes.
Felleman & Van Essen (1991) distinguish 32 areas,
each of which projects to many other areas, to give an
extremely complex wiring diagram (figure 4 in
Felleman & Van Essen 1991). Perhaps the most
important organizational hypothesis that has been put
forward regarding the functional relations between
cortical areas and the way in which information is
transformed through this network of areas is that,
starting from the primary visual cortex (V1), in-
formation flows out along two segregated streams, each
of which is hierarchically organized. This ‘ two streams’
hypothesis was first proposed by Ungerleider & Mishkin
1982 (see also Mishkin et al. (1983)) on the basis of
anatomical, physiological and lesion data, and quickly
became the dominant view of the gross organization of
cortical visual processing (see, for example, Maunsell
& Newsome 1987; Livingstone & Hubel 1988;
Desimone & Ungerleider 1989; Baizer et al. 1991 ).
More recently, the more extreme versions of this view
have come increasingly under attack, as evidence ac-
cumulates for the intermixing of information between
supposedly segregated pathways (e.g. DeYoe & Van
Essen 1988; Zeki & Shipp 1988; Goodale & Milner
1992; Merigan & Maunsell 1993). It is of interest
therefore to see whether the application of an objective
method for analysing the connectivity data such as
NMDs can shed light on these issues.

Our source data was the connectivity matrix forming
table 3 of Felleman & Van Essen (1991), henceforth
referred to as the FvE matrix. This contains information
aboutboth the afferent and efferent connection patterns
for each area. Of 31 x 32 = 992 possible connections,
675 are indicated as having been established uncontro-
versially as present or absent. The pattern of con-
nections is almost symmetric, as in all but five of the
cases that have been investigated in both directions, the
connections are reciprocal. From the FVE matrix we
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Figure 1. The configuration derived by ALscAL from a binary
similarity version of the FVE matrix. This has an rsQ of 0.47
and a ssTREss value of 0.41 (see text for explanation of terms).

derived a symmetric binary similarity matrix for 30 of
the areas, in which an entry is 1 if a connection exists in
either or both directions. Following Young (1992) we
omitted areas MIP and MDP because of the uncertainty
about the connections they make with other areas of
the visual cortex (Felleman & Van Essen 1991). We
submitted this matrix to the standard NMDs program
aLscAL at the ordinal level of measurement and
adopting the tied approach to ties (these terms will
be explained in the next section) to derive the two-
dimensional configuration shown in figure 1. This
configuration has a strongly annular form. It suggests
that, starting from V1, visual information flows out
in two highly distinct and hierarchically organized
streams as defined by the division and the ordering of
the areas in the two arms of the annulus, and then
reconverges in areas 46 and TF. The identity and
ordering of areas in the two arms correspond roughly
with that hypothesized in the two streams view for the
temporal and parietal pathways. In earlier work,
Young (1992) performed a closely related NMps analysis
and derived a very similar annular configuration. The
main difference between Young’s analysis and ours is
that he derived a fernary similarity matrix from the FvE
matrix, where each similarity is assigned value 2 if the
corresponding areas are reciprocally connected, 1 if a
connection in one direction exists (the pathway in the
other direction being absent or untested), and 0 if both
pathways are either absent or have not yet been tested
for. We argue that a binary approach is more suitable
for two reasons. Firstly, it is somewhat arbitrary to
assert that areas connected in only one direction are
‘less similar’ than those connected in both directions.
Secondly, the strong reciprocity constraint existing for
connections that have been investigated in both
directions suggests that it is more appropriate to assign
the same value to an untested direction as to the tested
direction, rather than assuming that all untested
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connections are absent. If this were done virtually no
similarities of value 1 would be leftin Young’s similarity
matrix, rendering it almost binary. Later we show that
the bias towards annularity in NMDs configurations
derived from binary data is in any case shared by NMDs
configurations derived from ternary data. The Rss
(see §3b (iii)) between our configuration and Young’s is
0.045, indicating that they are in fact very similar.
Young concluded that his configuration provides
strong objective support for the two-streams view.t

However, this interpretation rests to a large extent
on the strongly annular nature of the configuration. In
the rest of this paper we present results to show that
NMDs has an intrinsic bias to produce annular con-
figurations given binary data, whether or not such
structure is actually present in the data. To make our
case it is necessary to go into some detail about the
mechanics of NMDs in the next section. Readers wishing
to study this only briefly should focus on §§3¢ and 34,
which illustrate the tendency towards annularity,
before proceeding to §4 where figure 1 is re-evaluated
in the light of these results.

3. MDS AND ITS APPLICATION TO BINARY
DISSIMILARITY DATA
(a) Metric mps

The seminal algorithm for forming a representation of
the dissimilarities between a set of entities by distances
within a geometric configuration of points, referred to
in the literature as classical MDs, metric MDS, metric
scaling, or principal coordinates analysis, was proposed
by Torgerson (1952). This method is used to construct
a geometric configuration, in a space of any chosen
dimensionality, in which the interpoint distances
approximate the dissimilarities. Metric scaling is related
to principal components analysis, one difference being
that the latter operates on an N x M multivariate data
matrix whereas metric scaling operates on an Nx N
matrix of dissimilarities. When a dissimilarity matrix is
constructed from a multivariate matrix by defining
the dissimilarity between two entities to be the
Euclidean distance between their respective locations in
M-dimensional attribute space, both methods will
produce the same configuration of points (Gower
1966).

If the dissimilarities are Euclidean distances, the
dissimilarity matrix can be represented exactly by a
configuration in a Euclidean space of dimension N-1.
In practice N is large and the aim is to find the best
approximation in a space of many fewer than N-1
dimensions. This can be achieved by calculating the
eigenvalues and eigenvectors of a certain matrix
derived from the dissimilarity matrix (an analytic one-
step procedure). See Gower (1966) for details of the
method. The best configuration in d-dimensional space

t We note that: (i) there are six discrepancies between Young’s
ternary matrix and the FVE matrix, namely the entries for PITd-
MSTd, PITd-FST, PITv-FST, PITv-MSTd, FEF-VIP and A46-
MT; and (ii) the published picture of the configuration obtained
by Young (Young 1992, figure 1) is stretched horizontally by a
factor of approximately 1.3; the proper coordinates were kindly
supplied to us by Dr Young.
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can then be computed from the leading 4 eigenvectors
and eigenvalues, with the ratio of the sum of the first 4
eigenvalues to the sum of all the eigenvalues reflecting
the goodness of fit. However, often the dissimilarities
are non-Euclidean, leading to some negative eigen-
values. Provided none of these negative eigenvalues is
large in magnitude, a real solution of low dimension-
ality may often still be obtainable. See Gower (1966) or
Krzanowski (1988, pp. 104-113) for discussion of this
issue.

Metric Mps assumes that dissimilarity data is at
either the ratio or interval level of measurement, rather
than the weaker ordinal level.f We next describe an
algorithm that is free from this limitation.

(b) Non-metric mps

Various algorithms have been proposed to find the
best geometric representation of dissimilarity data
specified at the ordinal level (Shepard 1962a,b;
Kruskal 19644,b). We refer to the basic non-metric
method as NMDs.

For any set of dissimilarities in a symmetric N X N
matrix it is always possible to find a configuration in
N-1dimensions where the ordering of distances between
points reflects the ordering of dissimilarities (Bennett &
Hays 1960; Shepard 19624). Again, the practical
problem is to calculate the best approximation in a
much lower dimensional space. The NMps algorithms
work by doing gradient descent in an objective function
that specifies to what degree the rank ordering of
distances in the configuration departs from the rank
ordering of dissimilarities in the matrix. Our summary
of the method follows Coxon (1982) and Krzanowski
(1988). An initial configuration of points is chosen in
the space of required dimensionality (often by applying
metric scaling). The ordering of distances is then
compared with the ordering of dissimilarities, and
discrepancies identified. For each distance, a target
value is defined such that, if all distances reached their
targets, the two orderings would match. These target
values are termed disparities. Many disparities may be
equal: only weak monotonicity of disparities with
dissimilarities is enforced.

An objective function of the discrepancies between
distances and disparities is then minimized either
directly, or by gradient descent. New disparities are
then calculated, and the procedure iterates until there
is negligible improvement in the objective function.
The calculation of disparities can be expressed as the
minimization of the same objective function when the
variables are the disparities, given the constraint that
they vary monotonically with the corresponding
dissimilarities. There is no guarantee that a global
rather than local minimum will be reached. The axes

1 Conventionally, four levels of measurement are defined (Stevens

~ 1951). Ratio: absolute values are meaningful; both the intervals
and zero point of the scale are relevant (example: mass). Interval:
intervals in the data are meaningful, but not the zero point
(example: Celsius temperature scale). Ordinal: only the ordering
of the data is meaningful, not the values (example: a subject’s
rating of taste stimuli in a psychology experiment). Nominal: the
data describes only distinct unordered categories.
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and scale of the final plot computed by NMDs are
arbitrary: usually the plot is scaled by placing the
centre of mass of the points at the origin and
constraining the coordinate variance.

Several versions of NMDs exist, each using a different
objective function or minimization procedure. Each
algorithmic development has become bound up with a
particular computer package (Gower 1982 ; Torgerson
1986), and so it is only possible to reproduce NMDs
results if the same version of a computer package is
used. Although one can make general claims about the
behaviour of NMDs on a particular problem, behaviour
at a detailed level is specific to the program used. Our
results were obtained with the nNMDs option of the
widely used aLscaL algorithm (Takane et al. 1977), as
implemented in Version 4 of the SPSS statistical
software package (Young & Harris 1990).

(1) Objective functions

The objective function for NMDps proposed by Kruskal
(19644,b) is termed sTREss. The square of STREss is the
sum over all pairs of points of the squared difference
between distance and disparity, divided by the sum of
squared distances. The function minimized by ALscAL
is called ssTRESss. The square of sSTRESS is the sum over
squared differences between squared distances and
squared disparities, divided by the sum of quartic
disparities. This function was adopted for computa-
tional convenience, since it allows minimization to be
performed by an efficient ‘alternating least squares’
algorithm rather than steepest descent. When inter-
preting ALSCAL output, it should be borne in mind that
ssTRESS emphasizes the fitting of large disparities over
small ones (see, for example, Greenacre & Underhill
1982). Empirically, the sTrREss values of scaling solu-
tions have been found to be approximately linearly
related to the ssTREss values, with proportionality
constant & 0.75 (Young & Null 1978); a similar
relation was found to hold for the solutions generated
in the current study (data not shown). Another
quantity sometimes quoted as a performance measure
for Nmps, particularly for ALscar, is rsQ, the squared
correlation between disparities and distances. For a
perfect solution rsQ is 1.0. Note that RsQ is not
optimized explicitly. We shall often call ssTrREss and
RsQ ‘apparent fit’ measures.

Considerable effort has gone into quantitatively
interpreting STREss (and ssTREss) values when, as is
usually the case, the underlying configuration (if one
exists) is unknown. One approach is to compare the
observed sTREss value with those obtained by scaling
random dissimilarity matrices possessing no structure:
if the former lies within the distribution of the latter
then it is safe to conclude that the original dis-
similarities were effectively noise and thus that the
derived configuration be disregarded (Klahr 1969;
Stenson & Knoll 1969). However, this approach is of
limited utility, since even if the hypothesis of random-
ness can be rejected ©... the data may be so errorful that
the resulting solution is relatively useless’ (Spence &
Ogilvie 1973, p. 516). An alternative approach, utilized
in this paper, i1s to scale datasets genecrated from
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Figure 2. Configurations derived from the city matrix using Nmps. (a) Using full dissimilarities. ssTrREss = 0.0011,
RsQ = 1.000, rss = 0.00012. (b—d) Using binarized matrix for P, = 309,, 499, and 799, respectively. sSTRESS, RSQ
and rss values are plotted in figure 3. Note that for large P, some points become coincident as they now have

identical rows in the dissimilarity matrix.

artificial geometric configurations. By incorporating
an error model into the process of generating the
dissimilarities, such Monte Carlo studies (e.g. Young
1970; Wagenaar & Padmos 1971; Sherman 1972)
attempt to mimic real situations in which the ex-
perimental data reflects an underlying structure but is
corrupted by noise. Comparison of the observed value
of the objective function with the Monte Carlo values
can suggest whether the solution represents valid
structure.

(ii) Tied data

Two or more different entries in the dissimilarity
matrix may have the same value. This causes am-
biguity in defining an ordering of the data. Two
approaches for dealing with tied data are usually
considered (Kruskal 1964 a): (i) untied approach: tied
dissimilarity values may be broken in the configuration,
i.e. there is no penalty if the corresponding distances
are unequal; (ii) tied approach: tied values should be
conserved as far as possible. These two approaches to
ties are also referred to as primary and secondary. We
prefer the untied/tied nomenclature since it is more
explicit, and does not imply an ordering of the two
methods. Most programs allow either approach. With

Phil. Trans. R. Soc. Lond. B (1995)

a large number of distinct levels in the data, which
approach is chosen has little effect on the final
configuration. For a small number of levels the
differences can be significant. There are no hard-and-
fast rules for deciding which approach to ties is more
applicable for a particular problem.

(iii) Comparing configurations
In comparing two configurations, only the internal
relations between the points are relevant. We used
Procrustes analysis (Schénemann & Garroll 1970;
Gower 19716; Sibson 1978). Here one configuration is
transformed so that the residual sum of squared
distances (Rss) between corresponding points is mini-
mized. The transformations allowed are rigid trans-
lation, isotropic scaling, rigid rotation, and reflection.
Given that both configurations are normalized, the
value of rss can range from 0.0, for a perfect fit,
upwards to 1.0. The NAG (1991) subroutine GO3BCF
was used to perform the Procrustes analyses reported in
~ this paper.{

t An alternative approach is to measure the correlation between the
distances separating corresponding pairs of points in the two
configurations (Shepard 1966).
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Procrustes analysis is particularly useful in control
studies when the true configuration underlying the
dissimilarities is known; the success of the recon-
struction by NMDs (or indeed any other method) can
then be measured directly, rather than indirectly in
terms of SSTRESS, STRESS or RSQ. In such studies it has
been found that the apparent fit measures are not
always good indicators of the real fit as given by
measures of configuration similarity (e.g. Young 1970).
Sometimes we will refer to ‘the rss value’ of a NMDs
configuration, meaning the value of rRss between that
configuration and the true configuration. We will
sometimes refer to rRss as a ‘true fit’ measure.

(¢) Reconstructing geometrical configurations from
binary data

A problem in assessing the quality of constructions
obtained by ~Nmps is that usually either a true
configuration is unknown or does not exist. This does
not arise when test data is generated from geometrical
configurations. We now investigate how accurately
known configurations can be reconstructed by NMDs
given only binary information about distances. Results
are firstly shown for two particular configurations
chosen to give a feeling for how well reconstruction can
be achieved. These are: (i) a configuration of 20 cities
in Great Britain, where inter-city dissimilarities were
derived from Euclidean distances between cities on a
map; and (ii) a regular square grid of 8 x 8 points,
where inter-point dissimilarities are again Euclidean
distances. We then present statistics summarizing a
systematic study of an ensemble of randomly generated
distributions of points in the plane. Here we con-
centrate on the tied approach: later we discuss the
untied approach, and suggest that this offers little
improvement.

In all cases binary dissimilarity matrices were
generated by choosing a threshold distance and then
setting all distances in the full dissimilarity matrix
below threshold to zero (‘near’) and above to one
(‘far’). Several different binary matrices were gener-
ated from the same full dissimilarity matrix by choosing
different threshold values to give different proportions
of nears and fars. Py is the percentage of nears in the
resulting binary matrix (excluding the diagonal en-
tries).

(i) City and grid distributions

We first applied arLscaL to the full dissimilarity
matrix. The true configuration was reconstructed in
both cases: the resulting city configuration is shown in
figure 2a. This demonstrates the basic power of the
algorithm to produce accurate geometric recon-
structions when given ordinal data with many distinct
levels.

City configurations derived from binary matrices for
a selection of values of Py using the tied approach are
shown in figure 2 b—d. The overall structure of the true
configuration is almost completely destroyed by the
binarization for all values of P,. This is reflected in
figure 3, where sSTRESs, RsQ and Rss values are plotted
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as a function of Py,. According to all these criteria,
performance is best for P, = 609%. Some con-
figurations computed by NuDs for the grid distribution
are shown in figure 4. As is apparent from both visual
inspection and Rrss values, the reconstruction is much
better than for the city distribution, even though
sSTRESS and rsQ values are comparable to those for the
city distribution (figures 3 and 4).

The reason that in neither case does the RsQ
approach 1 despite the success of the reconstruction is
that there is an inherent upper bound on RsQ for
scaling binary data using the tied approach (as first
pointed out by Simmen 1994). The precise value of this
RsQ ‘ceiling’ depends on the particular configuration
obtained. To explain the origin of the ceiling, recall
that rsQ is the squared correlation between distances
and disparities (see §36(i)) and for binary data there
are just two disparities. In the optimal case there is no
overlap between the sets of interpoint distances assigned
to these two disparities. However, there is in general a
spread within the two categories, which reduces to
below 1 the correlation between distances and dis-
parities. Only in the rare case of a configuration having
just two distinct interpoint distances can the rsQ be 1.
The rsQ ceiling for the city distribution is 0.71 (at
P, =67%), and for the grid distribution 0.70 (at
Py =559%,). Thus in both cases the best rsQ achieved
is close to the best possible. Similar arguments apply to
dissimilarity data that consists of several discrete levels:
the rsQ ceiling will approach 1 as the number of unique
levels becomes large. Analogously, there is an sSTREss
‘floor’, the existence of which can be seen in Young &
Null (1978), although it was not remarked upon there.

Why is the reconstruction for grids generally better
than for cities? The grid configuration has more points.
It is well known that the true fit of NMDs solutions
(sometimes called the degree of ‘metric determinacy’)
tends to increase with the ratio of the number of
elements in the dissimilarity matrix to the number of
degrees of freedom in the derived configuration
(Shepard 1966; Young 1970). This is borne out by the
Monte Carlo study below. However, the more uniform
distribution of points in the grid configuration may also
aid accurate recovery.

(ii) Random geomelrical distributions

We now present the results of a more systematic
investigation involving many Monte Carlo experi-
ments scaling binary dissimilarity data derived from a
large number of artificially generated two-dimensional
configurations. To be of help in interpreting the results
of real NMDs analyses, ideally Monte Carlo studies
should be conducted with configurations like those
thought to underly the experimental data involved.
Given that the underlying structure can usually only
be guessed at, it is sensible to perform Monte Carlo
studies on configurations of several different forms.
Later we report Monte Carlo results obtained using
configurations having annular form, but in this section
we present Monte Carlo results obtained from what we
call disc configurations. These were gencrated by
randomly locating points within a circle of unit radius.
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Figure 3. Graphs showing various measures of the quality of the derived city distributions as a function of P,,. (a) RsQ

(diamonds) and ssTREss (circles). (b) Rss.
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Figure 4 (a—c). Configurations computed from the grid distribution by NMps. Py, = 259, 509, and 75 9%, respectively.
Points that are adjacent to each other in the grid underlying the dissimilarity matrix are connected by lines.
(d, ¢). Graphs showing various measures of the quality as a function of P of the configurations computed for the
grid example. (d) RsQ (diamonds) and sSTREss (circles). (¢) Rss.

Three different numbers of points were investigated:
N =15, N=30, and N = 45, with 20 different con-
figurations for each value of N. Binary matrices were
generated as described in the previous section, Py
ranging from 0.2 to 0.9 in increments of 0.1.

Figure 5 shows that the ssTREss, RsQ and Rss curves
show the same variation with P, as found in the cities
and grid examples. rss decreases with N, as expected

Phil. Trans. R. Soc. Lond. B (1995)

from metric determinacy arguments. A different trend
is indicated by the apparent fit measures: e.g. RsQ is
consistently higher (i.e. better) for N =15 than for
N = 30. Thus increasing N aids accurate recovery but
this is not reflected in the apparent fit measures, which
usually are all that is available. This unwelcome effect
is not specific to binary data: Kruskal & Wish (1978)
noted that sTREsS values tend to grow with increasing
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Figure 5. Performance measures for Monte Carlo runs as a function of Py, for different numbers of configuration
points N (diamonds, N = 15; circles, N = 30; squares, N = 45). Vertical bars are standard errors over 20 runs. (a)
Mean RrsQ (upper curves) and ssTREsS (lower curves). (b)) Mean Rss.
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Figure 6. Values of mean rss for Monte Carlo runs as error
is added into the process of generating the dissimilarities,
for Py = 509, (diamonds, N = 15; circles, N = 30; squares,
N = 45). Vertical bars are standard errors over 20 runs.

N for small values of N, but become stable for larger
values of N.

Real dissimilarity measurements are almost always
prone to error, and we wished to test the influence of
this in the binary case. Error was introduced into the
full ‘distances’ d;; by the following standard formula
(Young 1970):

2 H
dy = [ Y (Xowt € — Xow— Cjure) 2] >

k=1

where y;, is the kth coordinate of point ¢ and ¢, is an
independent random variable drawn from a gaussian
distribution. The standard deviation o, of the gaussian
is defined in terms of an error level E through
o, = Eo,, where g, is the standard deviation of the
coordinates in the particular configuration. Results for
Py =50% are shown in figure 6. Performance

Phil. Trans. R. Soc. Lond. B (1995)

decreases as the added error increases, with greater
rapidity for small N than large N. For further discussion
see Simmen (1994).

(d) Annular structures

Here we show that when ALscaL is used to scale
binary data using the tied approach, in two situations
the derived configuration has an annular structure.
These situations are when (i) the data has low Py, or (ii)
the derived configurations have low fit.

Figures 2 and 4 show that scaling the city and grid
distributions gives a marked annularity to the derived
configuration for Py < 509,, with the strongest effect
at low P,. We explored this effect systematically by
examining the configurations produced in the Monte
Carlo experiments. The dissimilarity matrices used in
those experiments were derived from disc configur-
ations. Each plot of figure 7 is the superposition of the
solutions from the 20 different runs for N = 30 points,
at given values of Py, and added error, E. For no added
error, shown in the top row, there is again a strong
tendency towards annular solutions for low P,. The
plot in which the points are spread most uniformly over
the disc is that for P, = 709, ; this value of Py, also gives
the best true fit (mean Rss = 0.044; see figure 5).
Equivalent superposition plots for N = 15 and N = 45
(not presented here) show similar trends.

The second bias towards annularity can arise in
derived configurations with poor fit. The middle and
bottom rows of figure 7 illustrate this, showing changes
in the overall shape of the solutions as the dissimilarity
matrix is corrupted by error, leading to lower fit.
Quantitative measures of performance for the three
error levels are shown in figure 8.

If AaLscaL has a tendency to produce annular
configurations for low Py or in cases of low fit, then in
such cases reconstructions of configurations that have
true annular structure should be better than recon-
structions of disc configurations. To test this, the
Monte Carlo study described in §3¢(ii) was repeated,
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Py=30% P\=50% P\=70% Py=90%

Figure 7. The solutions obtained by scaling binary dissimilarity matrices derived from configurations of 30 points
taken randomly from a disc. Each plot shows the superposition of 20 solutions, drawn about their common centroid.
Results are shown for different values of added error, E, and the proportion of ‘nears’, P,. Note the similarity of the
trend shown in the top row to that seen in figure 4 (a—c).
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Figure 8. Performance for disc distributions with N = 30, for various levels of additional error (diamonds, £ = 0.0;
squares, £ = 0.2; circles, E = 0.4). Each point is the average computed from 20 runs, vertical bars indicate standard
errors. © X’ marks the data point ‘vs’, explained in §4 in the text. (a) rRsQ. (b) Rss.
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Figure 9. True fit (rss) for the reconstructions of annular distributions (diamonds) compared to the fit for uniform
distributions (circles). N = 30. Each point is the average computed from 20 runs, vertical bars indicate standard
errors. (a) Variation with Py, no added error. (b) Variation with error level for P, = 509%,.

but with points drawn randomly from the annulus
with internal radius 0.7 and external radius 1.0. As
shown in figure 9a, for low P, reconstructions of
annular configurations are substantially more accurate
than those of disc configurations, the effect diminishing
as Py increases. Figure 954 shows that as more error is
added into the dissimilarity matrices to lower the fit,
the difference in Rss between reconstructed annular
and disc configurations increases.

(1) Why do annular structures occur?

The bias towards the production of annular struc-
tures for low Py data is due to the constraints imposed
in the tied approach. Suppose that data from a square
grid of points is scaled and that the near/far distance
threshold is chosen such that for a point close to the
centre of the grid only its four neighbours are regarded
as ‘near’. Consider the value of ssTREss calculated for
a perfect reconstruction of the grid. Although the
constraint that such a point be close to and equidistant
from its ‘near’ points is satisfied, giving no contribution
to SSTRESS, there is a broad distribution in the distances
from it to the large number of ‘far’ points, giving a
large contribution to ssTREss. If now all points are
pushed out towards the edge (as in figure 4a), there
will be a small contribution to ssTrREss from the
population of ‘near’ points. There will be a much
larger reduction in ssTRESs from the population of ‘far’
points, since there is now a smaller spread in their
distances from the reference point.t

The bias towards annularity produced by low fit was
first conjectured for ssTREss by de Leeuw & Bettonvil
(1986). From a mathematical analysis they concluded
that “especially in the case of poor fit, multidimensional

1 For zero error and large Py, figure 7 also shows that points cluster
in the centre of the configurations. There are many ‘near’
distances and few ‘fars’ and so to minimize the ssTrEss the
distribution of distances associated with ‘nears’ must be as narrow
as possible, the distribution of ‘fars’ being of less importance. Note
that this trend is abolished for low fit.

Phil. Trans. R. Soc. Lond. B (1995)

scaling solutions based on ssTREss may be biased
towards distributing clusters of points regularly over
the surface of a sphere.” In further support of this, we
note that extremely poor fit solutions can be generated
by scaling random data with no underlying structure
(equivalent to £ — o0 in our protocol) and that these
are strongly annular in form, irrespective of whether
the dissimilarities are binary or not (our unpublished
observations).

(il) Seriation

The generation of curved structures by NMps (and
other methods) has been noted in the context of the
problem of seriation (Kendall 19716), which is
concerned with the extraction of an underlying one-
dimensional order. In archaeology, for example, it is
often desired to find the temporal ordering of a number
of grave sites, given data on the incidence of a number
of distinct artefacts at each site and the assumption that
each type of artefact was produced in just one period of
history. The dissimilarity between any two graves is
calculated as a function of the overlap between the
collections of the artefacts they contain. nMDs is then
applied using the tied approach, standardly in two
dimensions. Given suitable data, a roughly one-
dimensional configuration can be obtained, yielding
the appropriate serial order. Rather than the entities
lying on a straight line in the two-dimensional NMDs
plot, they are usually bent into a shape conventionally
termed a horseshoe (see, for example, Kendall 19716,
1975; Shepard 1974; Gower 1987). For the purposes of
seriation this effect does not hinder interpretation,
provided the tips of the horseshoe are readily identi-
fiable.

As has been discussed by Kendall (19714, 1975),
among others, horseshoes can arise from the constraints
imposed in the tied approach. Consider the case where
the dissimilarity between any two entities is low for
entities nearby in the sequence, increases with in-
creasing separation and then reaches a maximum.
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If'in the derived configuration the entities are arranged
in the correct order and in a straight line, there will
be a large spread in the distances associated with the
maximal dissimilarities and hence a large contribution
to sSTRESs; it is more favourable to place the entities
around a horseshoe. This effect is most marked when
many dissimilarities have maximum value, which for
the binary case corresponds to low Py.

The shape of the horseshoe will depend on the
objective function. sTREsS is a quadratic function of the
discrepancies between distances and disparities, and
thus its value is influenced more by large distances than
by small ones. This effect is even stronger for ssTRESs,
which contains quartic terms. Thus ArLscaL (which
minimizes sSTREsS) would be expected to have a strong
tendency to produce horseshoes. Other non-NMDs
techniques for seriation also tend to produce curved
structures. In ecology, for example, controversy exists
about the use of detrended correspondence analysis
(Hill & Gauch 1980) to remove the horseshoe effect,
with researchers disputing whether or not the effect
reflects genuine structure: see for example Wartenberg
et al. (1987) and the subsequent correspondence.

4. RE-EEXAMINING THE VISUAL SYSTEM
CONFIGURATION

In §2 we derived an nMDs configuration for 30 areas of
the primate cortical visual system (figure 1). Using our
Monte Carlo results for configurations of 30 points, we
now assess whether this configuration, which we hence-
forth refer to as vs, is likely to be biased towards
annularity by either low Py or low fit. The P value for
our similarity matrix derived from the visual system

(@)

E=0.0

RSQ

data is 419%,. From figure 7, annularity is apparent
in reconstructions of disc configurations for both
P, =309, and P, = 509, even for zero added error.
Regarding the fit, vs has an rRsQ value of 0.47, as
compared to the RsQ ceiling value (constraining Py to
equal 41 9,) of 0.73 (effectively the ‘perfect’ fit value
using the tied approach). Scrutiny of figure 8a shows
that this low fit value is comparable with that obtained
by scaling data from disc distributions with a noise
level E = 0.3, for a similar value of P. This equivalence
holds not just for the rsQ values but also for these
normalized by the RsQ ceiling values: the mean ceilings
(fixing Py to 409%,) for the Monte Carlo results for
N =30 and Py, =409, are 0.74+0.03 and 0.724+0.02
for the E=0.2, 0.4 cases respectively. Figure 7
indicates that the reconstructions in the £ = 0.3 case
would be markedly annular.

We have conducted additional Monte Carlo tests
that confirm that these findings still hold in the case of
ternary level similarity data, as was used by Young
(1992). For example, the experiments of §3¢ (ii) on
scaling data derived from disc" distributions were
repeated using ternary level data. The proportions of
‘high’, ‘medium’, and ‘low’ similarity elements were
chosen to match those in the ternary similarity matrix
derived from the visual system FVE matrix according to
Young’s assignment rules (see section §2). Figure 10a
shows that the reconstructions again have an annular
form, whereas figure 104 shows that the recon-
structions from E = 0.3 data have rRsQ values similar to
that obtained scaling the ternary similarity matrix for
the visual system.

On the basis of these comparisons, we suggest that
the NMDs configuration derived from the visual system

1.0

l ] I ] I
0 0.2 0.4 ‘

error E

Figure 10. Results from scaling ternary similarity data derived from the same configurations of 30 points taken
randomly from a disc that were used in § 3¢ (ii), using a simple generalization of the procedure used to produce binary
data. The numbers of similarity values assigned values 0, 1, and 2 were fixed to be 255, 57, and 123, these being the
equivalent numbers in the ternary similarity matrix derived from the visual system FvE matrix. (a) Superposition plots
of the 20 solutions, drawn about their common centroid, for two levels of added error in the similarity data. () The
mean RsQ value as a function of the level of added error. Vertical bars are standard errors computed over 20 runs.
The dashed line indicates the value of rsQ (0.47) obtained scaling the ternary similarity matrix derived from the FVE

matrix.
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Figure 11. Example binary similarity matrices displaying serial order for 12 entities. (a) Serial order with distinct
endpoints. (b) Cyclical serial order. These two forms are closely related to what are termed simplex and circumplex
structures respectively in the psychological literature (Guttman 1954; Shepard 1974). Diagonal elements (which by

convention have value 1) are not shown.

data is corrupted by artefact. NmMDs has been applied to
connectivity datasets from other regions of the brain,
and most of the configurations published also have low
RsQ and a strongly annular or horseshoe shape (Young
1992, 1993; Scannell & Young 1993). In the absence of
independent corroboration it is most reasonable to
assume that these configurations also have an arte-
factual component.

(a) An independent analysis based on seriation

We have used a graph-theoretic method derived
from the seriation literature to attempt a corroboration
for the visual system data. We discuss how far it is
possible to order the set of entities so that each entity
has a similarity of 1 (or dissimilarity of 0) to the entities
closest to it in the sequence and a similarity of 0
(dissimilarity of 1) to all other entities. We distinguish
orderings in which the sequence has two distinct
endpoints from those where the sequence is cyclical.
Figure 11 shows similarity matrices corresponding to
these cases, the order of rows (or columns) specifying
the ordering of entities. In the case of cyclical order, in
addition to the diagonal band of 1s there is a cluster at
the off-diagonal corners. Assessing whether the entities
can be arranged in a serial order is equivalent to
permuting the rows and columns of the symmetrical
similarity matrix to see if it can be cast into one of these
characteristic forms.

A measure of the degree to which these ideal matrix
forms can be approached is provided if each entity is
regarded as a point in N-dimensional space, with
coordinates given by the elements in the corresponding
row of the similarity matrix and distances given by the
Hamming measure. Expressed in these terms, the best
permutation of rows and columns for the cyclical case
is that which specifies the shortest closed circuit around
the N points, also known as the solution to the
Travelling Salesman Problem (Lawler et al. 1985).1 It
is straightforward to show that the circuit length for

1 Wilkinson (1971) and Hubert (1974) have discussed how the
related task of seriating entities given an entity-by-attribute
matrix is also equivalent to a shortest circuit problem.

Phil. Trans. R. Soc. Lond. B (1995)

perfect ordering is 2N; lengths greater than this
indicate imperfect ordering. Analogous considerations
hold for non-cyclical sequences. If the annular form of
the visual system NMDs solution vc strongly reflects an
ordering of the visual areas into two streams sharing a
common origin and destination, i.e. a cyclical ordering,
then the shortest circuit length for the similarity matrix
used to produce vs should be near 60. Using a
modified 3-opt algorithm (Lawler et al. 1985) to find
short circuits, the best circuit length we obtained (over
30000 runs) was 204.

Interpreting quantitative measures of imperfect
serial orderings is known to be difficult (Hubert 1974).
We therefore compared the visual system result with
those from Monte Carlo studies using geometrical
configurations. Table 1 shows the minimal circuit
lengths obtained for binary similarity matrices derived
in §3 from the disc and annulus configurations. Using
similarity data derived by thresholding exact distances
between points distributed randomly in an annulus
produces minimum circuit lengths close to the theor-
etical minimum. As noise is introduced into the
similarity data so the ordering becomes less perfect and
the circuit lengths grow. Circuit lengths for data
derived from configurations with points lying randomly
in a disc serve as a control, representing the results
expected when there is no underlying serial order to
the entities. The minimal circuit lengths in this case are
always higher than in the annular case (though as the
noise in the similarity data increases, the lengths show
signs of converging). The disc data in table 1 confirms
that the increasing annularity of NMDs solutions as the
apparent fit level decreases (illustrated by figure 7)
does not reflect genuine ordering.

Comparing the visual system result of 204 with the
table 1 data, we note that 204 is far in excess of 107.2,
the mean minimal circuit length for data-sets derived
with no added noise from disc-like configurations (i.e.
data-sets possessing no obvious serial order). Further-
more, the visual system result is consistent with those
from similarity matrices generated from disc-like con-
figurations with a considerable degree of noise, specifi-
cally, those with £ = 0.3. This is a striking result, since
0.3 is also the level of noise required in the Monte Carlo
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Table 1. Minimal circuit length L., as a_function of the level
of error (E) incorporated in similarity matrices derived from

genuine disc and annular configurations with N = 30 and
Py =409,

(Each average was computed over 20 instances, each defined
on a similarity matrix from the studies of §§3¢(ii) and 34. For
each instance, 500 runs (with different initial circuits) were
performed with a variant of the 3-opt algorithm, and the
minimum circuit length recorded. The average length of a
random circuit on a random binary similarity matrix is
2P, (100—P,) N*x 107*: for N =30 and P, =409, this
equals 432.)

disc annulus

E meants.d. of L meanzs.d. of L
0.0 107.2+11.4 61.2+1.5

0.1 125.9+13.0 79.2+4.3

0.2 164.5+13.0 118.9+9.7

0.3 213.5+14.3 167.6+13.6

0.4 242.0+10.2 220.2 +14.1

0.5 265.0+11.6 256.6 +12.8

runs to give an rsQ value matching that for vs. Thus
seriation and NMps, though independent methods, give
consistent results.

5. DISCUSSION

The areas found in the two arms of the annulus in vs
are roughly those found in the temporal and parietal
lobes, in agreement with the two streams hypothesis.
However, the tendency towards annularity in the NMDS
approach suggests that the existence of other types
of structure in the data would be obscured by this
analysis. Despite the appearance of vs, on the evidence
of the P, and rsQ values one interpretation could be
that the visual areas have an underlying abstract
connectivity structure in which they are positioned
throughout a circular region, reflecting little organi-
zation into streams. NMps will find annular structure
whether it exists in the data or not. Various authors
(e.g. Martin 1988; Merigan & Maunsell 1993) have
argued on biological grounds that two streams is a
rough approximation to the truth, but that this view
obscures the existence of other types of structure.

(a) Counterarguments to the claim of artefactual
structure

We now address the various counterarguments given
by Young et al. (1994) to the case presented in this
paper and in (Simmen ef al. 1994). Firstly, they state
that their results in press show that good (low Rrss)
solutions can be obtained from dissimilarities ‘at the
same level of measurement as connectivity data’
derived from geometric configurations. Secondly, they
state that artefactual structure only arises for RsQ
values significantly lower than that obtained for the
visual system data. The results presented in the current
paper contradict both these assertions (see for instance
figures 7, 8 and 10). Thirdly, using our seriation-based

Phil. Trans. R. Soc. Lond. B (1995)

method, they computed the circuit length for their
similarity matrix, and emphasized that the length of
their circuit lies well outside the distribution for
random circuits. We do not dispute this; however, a
more relevant point is that circuits shorter than those
derived from the visual system data can be produced
from data with no underlying serial order (see table 1).
Fourthly, they derived NMps configurations for the
visual system data in up to six dimensions, and claim
that these still possess a near-planar circular form
(though they do not present quantitative results). To
investigate this, we submitted our binary similarity
matrix for the visual system data to ALSCAL in three
dimensions, and then calculated the eigenvalues for the
three principal components of the resulting configu-
ration. These measure the variance in three directions,
with the third component giving the variance in the
‘flattest’ direction. If the configuration were a near-
planar circular ring, one would expect the first two
components to be much larger than the third com-
ponent. We obtained values for the three components
of 1.36, 0.93 and 0.81, indicating little flattening of the
configuration into a plane. The equivalent values using
Young’s tenary matrix are 1.37, 0.94 and 0.79.

(b) Alternative NMps approaches

We have identified various problems in interpreting
NMDS representations of dissimilarity matrices pos-
sessing few distinct levels. We now discuss whether
these problems can be lessened by adopting either of
two standard variations in the way NMDs is applied.
These are (i) using the untied rather than tied
approach, and (ii) using a ‘higher-order’ dissimilarity
matrix.

(1) The untied approach

Takane et al. (1977) argued that the untied approach
is appropriate if the data are drawn from a continuous
distribution and ties are due to rounding errors
introduced by the measurement process, and that the
tied approach is appropriate if the data are drawn from
an inherently discrete distribution. Connections be-
tween brain areas will be of different strengths.
However, the data in the FVE matrix is specified only
in terms of the presence or absence of connections,
reflecting the difficulty of ascribing more quantitative
values from the currently available biological data. If
one labels pathways as having one of several strengths,
then this implies a discretization of a presumably
continuous underlying distribution. The arguments of
Takane et al. (1977) indicate that the untied approach
should be used in this case. However, in the binary
case, one could regard presence/absence as being an
inherently discrete distribution, in which case the tied
approach is more appropriate. Thus the tied/untied
issue is much clearer for the case of many levels than
the binary case.

A practical problem of using the untied approach
with binary data is that the apparent fit measures
always indicate near-perfect reconstruction, irrespec-
tive of the true fit (our unpublished observations). This
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is simply because many fewer constraints are required
to be satisfied than in the tied case. For further
discussion see Coxon (1982, p. 53).

For comparison purposes we derived the untied
configuration for our binary similarity matrix for the
visual system data. The rsQ was 0.98, and areas were
spread more uniformly throughout the region than in
figure 1. However, given the small number of con-
straints, it is possible to move areas by quite large
amounts while barely changing the apparent fit. Thus
though adopting the untied approach ameliorates the
annular bias, it also introduces problems of its own.

(ii) Higher order dissimilarity measures

Mps works on an N x N matrix of dissimilarities
between entities. Sometimes the raw data is an N x M
entity-by-attribute matrix, each row giving measure-
ments of M attributes for a single entity. To apply MDs
to such data a dissimilarity matrix must be generated
by calculating dissimilarities between the attribute
vectors (Sneath & Sokal 1973; Gower 1971a; Krzan-
owski 1988). It is always possible to regard a dis-
similarity matrix as a particular type of entity-by-
attribute matrix in which the entries are themselves
dissimilarities, and then derive a higher-order dis-
similarity matrix by the same methods (Kruskal &
Wish 1978; Rosenberg & Jones 1972). As the new
matrix generally has more distinct data values than the
original one, this approach might appear useful for
overcoming the problem of ties in poorly differentiated
data-sets. However, Monte Carlo studies show that
NMDs solutions obtained using higher-order dissimi-
larities either do not give improved recovery of structure
(Drasgow & Jones 1979), or—for binary data-—
do so only for a particular row-comparison measure
for data with low P (Simmen 1994), a regime in which
the absolute levels of recovery are in any case rather
poor. However, there is a rather different type of
derivation rule relevant only to binary data.

This rule is easily understood when the raw dis-
similarities convey neighbourhood information. One of
the first examples was abuttal data for 88 of the depart-
ments of France (Kendall 19714). Each department
abuts at most eight others, so Py is somewhat removed
than 0.1. The results we presented above suggest that
reconstruction using the abuttal matrix directly would
be extremely poor. However, Kendall derived a new
dissimilarity matrix by setting the dissimilarity to be
the smallest number of departments stepped through to
join each pair. There are at least a dozen levels in the
new matrix, and the map of France obtained by scaling
it is very good (Kendall 1971a). This stepping
algorithm can be applied to any binary dissimilarity
matrix. However, it will work well only in certain
circumstances.

A map of France drawn on an elastic sheet can be
arbitrarily deformed without changing the abuttal
data. So why is Kendall’s map realistic? The de-
partments used are roughly the same size, and are
laid out roughly isotropically (the small Parisian
departments were excluded). In this case, the
stepping dissimilarity approximates the Euclidean
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distance: discretized into several levels. In contrast,
consider the mainland states of the USA. Good
reconstruction can be obtained for the western states.
However, as the eastern states are added, which are
much less regular in shape and size, reconstruction
deteriorates markedly (our unpublished observations).
The degree to which the entities are the same ‘size’
and uniformly distributed will determine the quality of
the reconstruction using the stepping rule matrix.
Similar arguments have been made by McGinley
(1977) and Sibson et al. (1981). The stepping rule
matrix for our similarity matrix derived from the visual
system data contains only three levels, and thus offers
little improvement over the original binary matrix.

(¢) Higher levels of detail

The data on which this analysis is based so far
ignores the fact that many of the areas in the visual
system are subdivided into regions or laminae with
different functional properties. In V1, for example,
the processing of colour and motion appear to be segre-
gated (Zeki & Shipp 1988). It may be more appropriate
to treat these different sub-regions as distinct entities
for the purposes of an NwmDs analysis. This type of
analysis also ignores information available about the
hierarchical relation between areas. There is a very
stereotyped pattern of laminar origin and termination
for connections between areas, depending on whether
the areas are at the same level in the processing
hierarchy, or whether one is above or below the other
(Felleman & Van Essen 1991). Such information can
be utilized to produce wiring diagrams incorporating
hierarchial structure based on alternative principles to
those of NMDs (Felleman & Van Essen 1991, figure 4).

6. CONCLUSIONS

We have: (i) investigated the usefulness of NnMDs for
reconstructing known configurations from binary data;
(ii) shown that two separate biases can cause arte-
factual, annular structure in the derived configura-
tions; and (iii) used these findings to address the
reliability of applications of NMDs to connectivity data
in the brain.

1. Reconstruction 'of known configurations from
binary dissimilarity data can vary, the quality im-
proving as the number of points (and thus the number
of constraints) increases. Another factor affecting
quality is Py, the proportion of nears in the dissimilarity
matrix. The best reconstruction is obtained for Py in
the range 50-609%,; for Py, >809% or P, <209,
reconstruction is very poor. A more important factor
affecting reconstruction quality is the nature of the true
configuration. Reconstruction of configurations of
points arranged in an annulus, for example, is much
better than reconstructions of points distributed uni-
formly within a circle.

2. Artefactually annular NMDs configurations can
arise for low P, and for low fit. Our results indicate
how measures of apparent fit might be used to predict
the circumstances under which the bias due to low fit
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is likely to play a role. These results also explain why
reconstruction is better when the true configuration is
annular. More generally, the results of any application
of NMDs to dissimilarity data containing a low number
of levels should be treated with caution.

3. The application of NMDs to connectivity data for
the visual system results in a configuration which is
strongly annular. It is highly likely that a component
of the annularity is due to artefact. This considerably
weakens the support that this configuration can
provide for the two streams view of visual processing.
Similar conclusions apply to the other recent appli-
cations of NMDs to connectivity data (Young 1993;
Scannell & Young 1993). Annular NMDs configurations
may be consistent with many interpretations of the
underlying structure of the data.
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